Auditory Contrast Spectrum for Robust Speech Recognition

نویسندگان

  • Xugang Lu
  • Jianwu Dang
چکیده

Traditional speech representations are based on power spectrum which is obtained by energy integration from many frequency bands. Such representations are sensitive to noise since noise energy distributed in a wide frequency band may deteriorate speech representations. Inspired by the contrast sensitive mechanism in auditory neural processing, in this paper, we propose an auditory contrast spectrum extraction algorithm which is a relative representation of auditory temporal and frequency spectrum. In this algorithm, speech is first processed using a temporal contrast processing which enhances speech temporal modulation envelopes in each auditory filter band and suppresses steady low contrast envelopes. The temporal contrast enhanced speech is then integrated to form speech spectrum which is named as temporal contrast spectrum. The temporal contrast spectrum is then analyzed in spectral scale spaces. Since speech and noise spectral profiles are different, we apply a lateral inhibition function to choose a spectral profile subspace in which noise component is reduced more while speech component is not deteriorated. We project the temporal contrast spectrum to the optimal scale space in which cepstral feature is extracted. We apply this cepstral feature for robust speech recognition experiments on AURORA-2J corpus. The recognition results show that there is 61.12% improvement of relative performance for clean training and 27.45% improvement of relative performance for multi-condition training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Auditory spectrum based features (ASBF) for robust speech recognition

MFCC are features commonly used in speech recognition systems today. The recognition accuracy of systems using MFCC is known to be high in clean speech environment, but it drops greatly in noisy environment. In this paper, we propose new features called the auditory spectrum based features (ASBF) that are based on the cochlear model of the human auditory system. These new features can track the...

متن کامل

Noise spectrum estimation using Gaussian mixture model-based speech presence probability for robust speech recognition

This work presents a noise spectrum estimator based on the Gaussian mixture model (GMM)-based speech presence probability (SPP) for robust speech recognition. Estimated noise spectrum is then used to compute a subband a posteriori signal-to-noise ratio (SNR). A sigmoid shape weighting rule is formed based on this subband a posteriori SNR to enhance the speech spectrum in the auditory domain, wh...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Regularized MVDR spectrum estimation-based robust feature extractors for speech recognition

In this paper, we present two robust feature extractors that use a regularized minimum variance distortionless response (RMVDR) spectrum estimator instead of the discrete Fourier transform-based direct spectrum estimator, used in many front-ends including the conventional MFCC, for estimating the speech power spectrum. Direct spectrum estimators, e.g., single tapered periodogram, have high vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006